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Topics of this presentation

1. Introduction: Why quotients of Fuchsian triangle groups ?

2. Existence of alternating factor groups

3. Search algorithms

4. Conjugacy of normal subgroups in PSL(2, R)
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1. Introduction: Why quotients of Fuchsian
triangle groups ?

Two points of view for Riemann surfaces:

• Bernhard Riemann (1851 – dissertation): Riemann surface is

the natural maximal domain of some analytic function under

analytic continuation.

• Hermann Weyl (1913 – ’Die Idee der Riemannschen Fläche’): A

Riemann surface is a one dimensional complex manifold.
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Discussion of the different definitions

These two points of view raise in interesting questions:

• If we start with a Riemann surface as an abstract manifold,

how do we know that it supports analytic functions ?

• If we develop Riemann surfaces from the point of view of

analytic continuation, how do we know that in this way we get

all complex manifolds of one complex dimension ?

⇒ Fortunately, it turnes out that these two different views of a

Riemann surface are indeed identical.
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Uniformization Theorem for Riemann surfaces

Every Riemann surface is the topological quotient with respect to

the action of some group Γ of analytic self-maps of one of the three

classical geometries of constant curvature:

• Riemann sphere Σ (positive curvature)

• Euclidean (or complex) plane C (zero curvature)

• Hyperbolic plane H (negative curvature)

In all cases the analytic self-maps are Möbius maps:

z 7→ az + b

cz + d
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What kind of Riemann surfaces can occur ?

• Quotients of the Riemann sphere: only the sphere itself

• Quotients of the Euclidean plane:

– Γ trivial ⇒ plane itself (once punctured sphere)

– Γ cyclic ⇒ twice punctured sphere

– Γ generated by two independent translations ⇒ torus
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Third cast: Hyperbolic plane

So the Uniformization Theorem implies:

• Apart from the non-negative curvature cases, every other

Riemann surface is the quotient of the hyperbolic plane H
(upper half-plane in the complex plane) by a group of Möbius

(conformal) self-maps of the hyperbolic plane.

• Such groups must be discrete (otherwise the quotient

structure would not be satisfactory).

• These groups are called Fuchsian groups.
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Why are triangle groups interesting ?

Can only answered using G. V. Belyi’s Theorem (1979), which

needs some preparation:

• A function f is called meromorphic on a compact Riemann

surface R if it is an analytic map from R to the Riemann

sphere Σ.

• Any such function has a multiplicity or degree n, in the

sense that for any w at the sphere there are exactly n solutions

of f(z) = w, z ∈ R. (Where we count multiple solutions in the

usual way.)
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Belyi’s theorem

• For certain values of w the cardinality of the set f−1({w}) may

be strictly less than n, such w are the critical values of the

map f : w is a critical value ⇔ |f−1({w})| < n

• Belyi function: Meromorphic function f , whose critical values

lie in the set {0, 1,∞}

• Belyi’s theorem. A compact Riemann surface R supports a

Belyi function ⇔ R is isomorphic to the Riemann surface of

some curve P (z, w) = 0 whose coefficients are algebraic

numbers.
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Definition of hyperbolic triangle groups

• Let p, q, r integers with 1/p + 1/q + 1/r < 1.

• Let T denote the hyperbolic triangle with angles π/p, π/q, π/r.

• Let ∆? denote the group generated by the reflections in the

sides of T .

• Triangle group ∆ = 4(p, q, r) is the subgroup of index 2 in ∆?

consisting of conformal transformations.

• This triangle group is determined up to conjugacy in the group

of all conformal homeomorphisms of H by the integers p, q, r.

• 4(p, q, r) is is generated by three elliptic generators x, y, z;

each with a unique fixed point in H:

4(p, q, r) = 〈x, y, z |xp = yq = zr = xyz = 1〉
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Connection between Fuchsian triangle groups
and Riemann surfaces

• Let Γ be a subgroup of finite index in ∆ = 4(p, q, r).

• Then Γ is a Fuchsian group and thus Γ\H is a compact

Riemann surface.

• The quotient space ∆\H is a sphere and the natural projection

τ : Γ\H 7→ ∆\H

has at most 3 critical values. (These occur at the projections of

the fixed points of the elliptic generators of ∆, but possible if

this fixed point is a fixed point of an elliptic generator of Γ,

then there will be less than 3 critical values.)
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Connection between Fuchsian triangle groups
and Riemann surfaces II

• Triangle group ∆ = 4(p, q, r)

• Finite index subgroup Γ < ∆

• Natural projection: τ : Γ\H 7→ ∆\H with at most 3 critical

values

• There is a Möbius transformation σ mapping the critical values

into {0, 1,∞}.

• Result: β = στ is a Belyi function from Γ\H to ∆\H.

12



Conclusion of the introduction

Corollary (Belyi, Wolfart, Jones, Singerman). The following

statements are equivalent:

1. R is a Belyi surface (i.e. R is defined over Q).

2. There is a Belyi function β : R→ Σ.

3. R ∼= Γ\U , where Γ is a finite index subgroup in a cocompact

triangle group and U is one of H, C or Σ.
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Background of further investigations

If we look to epimorphisms

ϕ : 4(p, q, r) → An,

(
1

p
+

1

q
+

1

r
< 1

)
then

Γ = Kernel(ϕ) < 4(p, q, r)

is a subgroup of finite index |An| = 1
2
n! and therefore

R = Γ\H

is a Riemann surface defined over Q which automorphism group

contains An.
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2. Existence of alternating factor groups

Miller (1901) proved that the classical modular group PSL(2, Z)

has among its homomorphic images every alternating group, with

the exception of A3, A6, A7, A8.

Conder (1980) proved that for n ≥ 168 the alternating group An is

a Hurwitz group.

In 1981 he proved that

(a) For every k ≥ 7 all but finitely many alternating groups can be

presented as factor groups of 4(2, 3, k).

(b) All but finitely many alternating groups can be generated by

two elements u, v with u2 = vk = 1.
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More existence theorems

Result of Mustaq/Rota (1992): For nearly all natural numbers n,

An is a homomorphic image of 4(2, k, l) with even k ≥ 6 and

l ≥ 5k − 3.

Everitt proved in 1994: For all r ≥ 6, nearly all alternating groups

An are factor groups of 4(2, 4, r).

In 1997 he showed:

(a) For r ≥ 40 there is a number N so that the group

G = 4(3, 5, r) has among its homomorphic images the group

An or Sn for all n > N .

(b) For every prime q ≥ 7 and every r ≥ 4q, the group 4(3, q, r)

has the same property.
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Final theorem of Everitt

In 2000 Brent Everitt proved the 30 years old conjecture of Higman:

Any Fuchsian group has among its homomorphic images

all but finitely many alternating groups.

The proof is constructive and uses coset diagrams. For every

Fuchsian group G there is a constant N , so that G surjects the

alternating groups An for n ≥ N . N depends only on the signature

of the group and can be easily calculated.
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Is the theorem of Everitt effective ?

Result of Everitt’s proof for some sample groups:

Triangle group Representation of index n Lower bound N

4(2, 3, 7) N = 168

4(2, 5, 6) n = 105a + 176b + 15 N = 18215

4(2, 5, 7) n = 105a + 286b + 15 N = 29655

4(2, 5, 9) n = 175a + 48b + 20 N = 8198

4(2, 5, 11) n = 66a + 175b + 15 N = 11325

4(2, 5, 13) n = 130a + 189b + 26 N = 24278

Result: In general, N is very large.

18



3. Search Algorithms

Task: Find all epimorphisms for a given triangle group to a given

alternating group.

All computations were made using GAP.

Discussion of two methods:

• Built-in algorithm: GQuotients

• Use of low index subgroups algorithm for finitely presented

groups
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GQuotients

Task:

Determine all epimorphisms up to conjugation of

4(p, q, r) = 〈x, y |xp = yq = (xy)r = 1〉

into a given alternating group An.

Commands in GAP:

F := FreeGroup("x", "y");

G := F / [F.1ˆp, F.2ˆq, (F.1*F.2)ˆr];

GQuotients(G, AlternatingGroup(n));
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How does GQuotients work ?

GQuotients is looking for tuples (gx, gy) from image group An with

the following properties:

• gx and gy must be images of the FP-generators x and y,

e.g. gp
x = gq

y = 1.

• gx and gy must be homomorphic images, e.g. all relations must

hold: (gxgy)
r = 1.

• gx and gy must generate An.

The method only returns tuples (gx, gy) that are unique up to

An-conjugation.
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Low index algorithm for FP groups

Suppose there is epimorphism ϕ : ∆ 7→ An. ∆ operates on right

cosets as An. The stabilizer of one point is a subgroup of ∆ of index

n. The reverse of this statement is also true and can be used to

construct the following algorithm:

• Find all subgroups of ∆ of index n.

• Test whether the image of the operation of ∆ on right cosets is

the alternating group.

• Faster test: Size of image must be |An| = n!
2
.
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Low index subgroups algorithm in GAP

F := FreeGroup("x", "y");

G := F / [F.1ˆp, F.2ˆq, (F.1*F.2)ˆr];

Size A n := Factorial(n) / 2;

Subgroups := LowIndexSubgroupsFpGroup(G, n);

All Images := List(Subgroups,

sub -> Image(FactorCosetAction(G, sub)));

Interesting Images := Filtered(All Images,

im -> Size(im) = Size A n);

Images Generators := List(Interesting Images,

im -> GeneratorsOfGroup(im));
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How does low index algorithm work ?

With Alexander Hulpke’s findings, the algorithm can be described

in the following way.

• LowIndex runs over all tuples (gx, gy) of permutations out of Sn

and tests whether the following conditions hold:

– gp
x = gq

y = (gxgy)
r = 1

– 〈gx, gy〉 operates transitively on m ≤ n points.

• Result: Subgroups of index n and the operation on the right

cosets.

• Last step: Size determination of the images.
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Comparison of the two methods

Differences between the algorithms:

• The generation of the tuples is different. (The LowIndex

algorithm calculates the permutations pointwise, e.g. first

image 1 for all permutations, then image 2 and so on.)

• Conjugacy test is faster in LowIndex (because Sn).

We should use GQuotients if

• the image group is smaller than An or Sn, or if

• there are many quotients of small index.

LowIndex should be prefered if

• we only want to determine the existence of epimorphisms.
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Genus formula

For a given triangle group 4(p, q, r) we look at the existence of

epimorphisms into alternating groups An. If p, q, r are primes, the

Genus formula can be used to find some values of n for which no

epimorphism into An exists.

Theorem (Genus formula):

If the triangle group 4(p, q, r) with primes p, q, r has

got a subgroup with index n, then we have

(p− 1)

[
n

p

]
+ (q − 1)

[
n

q

]
+ (r − 1)

[
n

r

]
≥ 2n− 2,

while [t] is the integer part of the rational number t

(Gaussian symbol).
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Genus formula as transitivity criterion

If the triangle group G = 4(p, q, r) with primes p, q, r features an

epimorphism ϕ : G 7→ An (n ≥ 3), then we have

(p− 1)

[
n

p

]
+ (q − 1)

[
n

q

]
+ (r − 1)

[
n

r

]
≥ 2n− 2.

This is due to the fact that every epimorphism into An corresponds

to a subgroup of index n.

The equation above is always true for n > 3 max{p, q, r}. In these

cases the formula cannot be used to show that there exists no

epimorphism into An.
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Results of the Genus formula

Group Index n with no epimorphisms into An

4(3, 5, 7) {13}

4(5, 7, 11) {19}

4(7, 11, 13) {19, 20}

4(11, 13, 17) {21, 32}

4(13, 17, 19) {25, 31, 32, 33}

4(17, 19, 23) {30, 31, 32, 33}

4(19, 23, 29) {36, 37, 45, 56}

4(23, 29, 31) {42, 43, 44, 45, 53, 54, 55, 56, 57}
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4. Conjugacy in PSL(2, R)

Topics of this section:

• If a Fuchsian triangle group ∆ contains two normal subgroups

N1 and N2, how can we determine, if those groups are

conjugate to each other in PSL(2, R) ?

• If they are conjugate, how can we find a suitable subgroup H of

PSL(2, R) containing an element h with Nh
1 = N2 ?

• If H can be choosen as a finite-index supergroup of ∆, then the

conjugating element h can be easily calculated using integrated

systems for computational group theory like GAP.
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Conjugacy in PSL(2, R)

Girondo/Wolfart (2005):

If the PSL(2, R)-conjugate surface groups K and K ′ are

both normal subgroups of the triangle group ∆, then

K ′ = αKα−1 for some α ∈ N(∆) or N(∆̃) where ∆̃

denotes the normalizer N(K) of K in PSL(2, R).

Using this result, it is possible to prove:

Let ∆ be a triangle group that is contained in only one

maximal triangle group ∆. If ∆ contains two normal

subgroups N1 and N2 that are conjugate surface groups

in PSL(2, R), then there exists an element h ∈ ∆ with

Nh
1 = N2.
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Proof of conjugacy theorem (I)

The proof uses mainly the following statements:

• Previous theorem of Girondo/Wolfart

• The normalizer of a non-cyclic Fuchsian group in PSL(2, R) is

again a Fuchsian group.

• Let G be a discrete group of conformal isometries of the

hyperbolic plane. If G contains a triangle group as subgroup,

then G itself is a triangle group. (Singerman)
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Proof of conjugacy theorem (II)

Short version: Surface groups N1, N2 C ∆, conjugate in PSL(2, R)

⇒ Nh
1 = N2 for an element h ∈ ∆.

Proof: Theorem of Girondo/Wolfart states existence of an element

h in N(∆) or N(N(N1)).

Case 1 – h ∈ N(∆): Since the normalizer is defined as

N(∆) = NPSL(2,R)(∆) = {α ∈ PSL(2, R) |∆α = ∆}

we obviously have ∆ ≤ N(∆) ≤ PSL(2, R).

A Fuchsian super-group of a triangle group must be a triangle

group:

∆ ≤ N(∆) ≤ ∆ < PSL(2, R) ⇒ h ∈ ∆.
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Proof of conjugacy theorem (III)

Case 2 – h ∈ N(N(N1)):

We have

N1 E ∆ ⇒ ∆ ≤ N(N1) ≤ N(N(N1)) ≤ PSL(2, R).

Since ∆ is a triangle group, N(N1) is also a triangle group and also

N(N(N1)) is. Therefore we can conclude:

∆ ≤ N(N1) ≤ N(N(N1)) ≤ ∆ < PSL(2, R) ⇒ h ∈ ∆.

Result: In every case, the conjugating element is contained in the

maximal triangle group ∆.
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Numerical example

• Looking for epimorphisms from 4(3, 5, 5) into alternating

groups An

• Determine whether the kernels are conjugate in PSL(2, R)

• Since 4(3, 5, 5) is only contained in the maximal group

4(2, 5, 6), the conjugating element must only be searched in

4(2, 5, 6).

⇒ Embedding of 4(3, 5, 5) into 4(2, 5, 6) and performing

conjugacy tests in 4(2, 5, 6)
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Calculation results

n |Epi(4(3, 5, 5) 7→ An)| Conjugate kernels in 4(2, 5, 6)

5, 6, 7 2, 2, 3 0, 0, 0

10 22 6 (3 pairs)

11 67 38 (19 pairs)

12 54 40 (20 pairs)

13 24 18 (9 pairs)

15 733 484 (242 pairs)

16 3411 2954 (1477 pairs)

17 3194 2872 (1436 pairs)

18 1564 1374 (687 pairs)

19 377 348 (174 pairs)
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Why do only kernel pairs appear?

Lemma: There cannot be a triple (N1, N2, N3) of pairwise

4(2, 5, 6)-conjugate kernels that are not conjugate in 4(3, 5, 5).

Proof: Let ∆ = 4(3, 5, 5). Thus ∆ = 4(2, 5, 6).

Then |4(2, 5, 6) : 4(3, 5, 5)| = 2 and we have ∆/∆ = {∆, x∆}.

If N1 ∼ N2 then there is an element α ∈ ∆ with N1 = Nα
2 . This α

cannot be an element of ∆, because in this case N1 and N2 would

be conjugate in ∆. So we have α = xα for an element α ∈ ∆.

If further N2 ∼ N3 there must be an element β ∈ ∆ with Nβ
2 = N3.

The same argumentation yields β = xβ for an element β ∈ ∆.

Together we have N3 = Nβ
2 = Nα−1β

1 = Nα−1x−1xβ
1 = Nα−1β

1 and

therefore N1 and N3 would be conjugate in ∆.
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Exceptional cases

There are 7 triangle groups, that are contained in more than one

maximal triangle group (Singerman 1972):

• 4(2, 7, 7) <
(9)
4(2, 3, 7), 4(2, 7, 7) C

(2)
4(2, 4, 7);

• 4(3, 3, 7) <
(8)
4(2, 3, 7), 4(3, 3, 7) C

(2)
4(2, 3, 14);

• 4(3, 3, 9) <
(4)
4(2, 3, 9), 4(3, 3, 9) C

(2)
4(2, 3, 18);

• 4(3, 8, 8) <
(10)

4(2, 3, 8), 4(3, 8, 8) C
(2)
4(2, 6, 8);

• 4(4, 4, 5) <
(6)
4(2, 4, 5), 4(4, 4, 5) C

(2)
4(2, 4, 10);

• 4(7, 7, 7) C
(3)
4(3, 3, 7) ⇒ contained in 4(2, 3, 7), 4(2, 3, 14);

• 4(9, 9, 9) C
(3)
4(3, 3, 9) ⇒ contained in 4(2, 3, 9), 4(2, 3, 18).

All groups on this slide are arithmetic (Takeuchi 1977).
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Groups contained in two maximal triangle groups

Can the theorem of Girondo/Wolfart also be reformulated for the

seven remaining triangle groups, that are contained in two maximal

triangle groups ?

For each group ∆ of the seven groups we must answer the following

questions:

• What is the normalizer N(∆) ? It will be contained in only

one maximal group.

• What is N(N(K)) if K is a normal subgroup of ∆ ? Is this

normalizer always contained in the same maximal group for

each K ?
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Normalizers of the exceptional groups

For five of them the determination is very simple:

4(2, 7, 7) C
(2)
4(2, 4, 7) ⇒ N(4(2, 7, 7)) = 4(2, 4, 7);

4(3, 3, 7) C
(2)
4(2, 3, 14) ⇒ N(4(3, 3, 7)) = 4(2, 3, 14);

4(3, 3, 9) C
(2)
4(2, 3, 18) ⇒ N(4(3, 3, 9)) = 4(2, 3, 18);

4(3, 8, 8) C
(2)
4(2, 6, 8) ⇒ N(4(3, 8, 8)) = 4(2, 6, 8);

4(4, 4, 5) C
(2)
4(2, 4, 10) ⇒ N(4(4, 4, 5)) = 4(2, 4, 10);

4(7, 7, 7) ?

4(9, 9, 9) ?
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Closer look to 4(7,7,7)

The inclusion list of Singerman (1972) states:

<
(8)
4(2, 3, 7)

4(7, 7, 7) C
(3)
4(3, 3, 7)

C
(2)
4(2, 3, 14)

To calculate the normalizer of 4(7, 7, 7), this group must be

embedded into 4(2, 3, 7) and 4(2, 3, 14).

This can be done using the results of Girondo (2003), who provides

subgroup generators for every inclusion between triangle groups.
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Embedding of 4(7,7,7) into 4(2,3,14)

The triangle group

4(2, 3, 14) = 〈G, H, I |G2 = H3 = I14 = GHI = 1〉

has got the subgroups

〈D, E, F 〉 = 〈GHG, H, H2GH2G〉 and

〈A, B, C〉 = 〈H2GH2G, GHGH2GHG, GH2GH2〉

of index 2 and 6 which are isomorphic to

4(3, 3, 7) = 〈D, E, F |D3 = E3 = F 7 = DEF = 1〉 and

4(7, 7, 7) = 〈A, B, C |A7 = B7 = C7 = ABC = 1〉.
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4(7,7,7) is normal subgroup of 4(2,3,14)

Using GAP we get:

> F := FreeGroup("x", "y");

> g2314 := F / [F.1ˆ2, F.2ˆ3, (F.1 * F.2)ˆ14];

> G := g2314.1; H := g2314.2;

> g777 := Subgroup(g2314, [Hˆ2*G*Hˆ2*G,

G*H*G*Hˆ2*G*H*G, G*Hˆ2*G*Hˆ2]);

> Index(g2314, g777);

6

> IsNormal(g2314, g777);

true

So we have 4(7, 7, 7) C 4(2, 3, 14).
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Embedding of 4(7,7,7) into 4(2,3,7)

The triangle group

4(2, 3, 7) = 〈G, H, I |G2 = H3 = I7 = GHI = 1〉

has got the subgroups

4(3, 3, 7) = 〈D, E, F |D3 = E3 = F 7 = DEF = 1〉 with index 8,

4(7, 7, 7) = 〈A, B, C |A7 = B7 = C7 = ABC = 1〉 with index 24

whereby the generators are

D = HGHGHGH2GH2, E = HGH2GHGHGH2, F = H2G

and

A = H2G, B = DH2GD2, C = EH2GE2.
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Is 4(7,7,7) also normal in 4(2,3,7) ?

Using GAP we get:

• 4(3, 3, 7) 6 4(2, 3, 7) and

• 4(7, 7, 7) 6 4(2, 3, 7).

Since 4(7, 7, 7) C 4(2, 3, 14) and 4(2, 3, 14) is maximal, we have

N(4(7, 7, 7)) = 4(2, 3, 14).
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Normalizers of the exceptional groups (II)

This is the complete list:

4(2, 7, 7) C
(2)
4(2, 4, 7) ⇒ N(4(2, 7, 7)) = 4(2, 4, 7);

4(3, 3, 7) C
(2)
4(2, 3, 14) ⇒ N(4(3, 3, 7)) = 4(2, 3, 14);

4(3, 3, 9) C
(2)
4(2, 3, 18) ⇒ N(4(3, 3, 9)) = 4(2, 3, 18);

4(3, 8, 8) C
(2)
4(2, 6, 8) ⇒ N(4(3, 8, 8)) = 4(2, 6, 8);

4(4, 4, 5) C
(2)
4(2, 4, 10) ⇒ N(4(4, 4, 5)) = 4(2, 4, 10);

4(7, 7, 7) C
(6)
4(2, 3, 14) ⇒ N(4(7, 7, 7)) = 4(2, 3, 14);

4(9, 9, 9) C
(6)
4(2, 3, 18) ⇒ N(4(9, 9, 9)) = 4(2, 3, 18).
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Normalizers of subgroups

Small subgroup diagram:

<
(8)
4(2, 3, 7)

4(7, 7, 7) C
(3)
4(3, 3, 7)

C
(2)
4(2, 3, 14)

We already know: N(4(7, 7, 7)) = N(4(3, 3, 7)) = 4(2, 3, 14).

Question: Is there a normal subgroup K of 4(3, 3, 7) with

N(N(K)) = 4(2, 3, 7) ?

Equivalent question: Is there a normal subgroup of 4(3, 3, 7) that is

also normal in 4(2, 3, 7) ?
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Exploring with GAP

• Define triangle group G = 4(3, 3, 7).

• Use ’LowIndex’ to find all subgroups of 4(3, 3, 7) with index 7.

• Label the subgroups with U1, . . . , U6. Define with ϕi : S7 7→ S7

the operation of G on the right cosets G/Ui.

i 1 2 3 4 5 6

Image(ϕi) A7 7:3 L(3,2) A7 7:3 L(3,2)

|Image(ϕi)| 2520 21 168 2520 21 168

Kernel(ϕi) C 4(3, 3, 7) yes yes yes yes yes yes

Kernel(ϕi) C 4(2, 3, 7) no yes no no no no

Surprising fact: The kernel of ϕ2 is normal in 4(2, 3, 7).
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Summary of GAP results

There is a group K with the following properties.

(a) K C
(7)
4(7, 7, 7) C

(3)
4(3, 3, 7) <

(8)
4(2, 3, 7)

(b) K C
(21)

4(3, 3, 7), K C
(168)

4(2, 3, 7)

(c) Therefore we have NPSL(2,R)(K) = 4(2, 3, 7), although

NPSL(2,R)(4(3, 3, 7)) = 4(2, 3, 14).

(d) K is the kernel of the homomorphism ϕ2 : 4(3, 3, 7) 7→ S7,

D 7→ (2 4 6)(3 5 7), E 7→ (1 2 5)(3 6 7), F 7→ (1 3 5 6 7 4 2).

(e) Restricted to the subgroup 4(7, 7, 7), the mapping is defined as

follows: A 7→ (1 3 5 6 7 4 2), B 7→ (1 7 3 4 5 2 6),

C 7→ (1 5 7 2 3 6 4), therefore the image of 4(7, 7, 7) is cyclic.
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Conjugacy theorem for exceptional cases

The example has shown, that the theorem of Girondo/Wolfart must

be formulated as follows for the seven exceptional groups:

Let ∆ be a triangle group that is contained in two different maximal

triangle groups ∆1 and ∆2. If ∆ contains two normal subgroups N1

and N2 that are conjugate surface groups in PSL(2, R), then there

exists an element h ∈ ∆1 ∪∆2 with Nh
1 = N2.
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Numerical example

• Looking for epimorphisms from 4(3, 3, 7) into An

• Determine whether the kernels are conjugate in PSL(2, R)

• Since 4(3, 3, 7) is contained in the maximal groups 4(2, 3, 7)

and 4(2, 3, 14), the following algorithm has to be used twice:

– Define maximal triangle group 4(2, 3, 7) (resp. 4(2, 3, 14))

– Define 4(3, 3, 7) as subgroup

– Determine the epimorphisms from 4(3, 3, 7) into An

– Perform conjugacy tests on the kernels directly in 4(2, 3, 7)

(resp. 4(2, 3, 14))
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Calculation results

n |4(3, 3, 7) 7→ An| Conj. in 4(2, 3, 14) Conj. in 4(2, 3, 7)

7 2 2 (1 pair) 0

9 5 4 (2 pairs) 0

10 1 0 0

14 128 96 (48 pairs) ?

15 267 220 (110 pairs) ?

16 339 264 (132 pairs) ?

17 110 80 (40 pairs) ?

18 40 20 (10 pairs) ?

19 12 0 ?

21 8224 ? ?
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Summary of the presentation

1. Existence of alternating factor groups:

Many exists !

2. Search algorithms:

Algorithm ’LowIndexSubgroups’ is faster than

’GQuotients’.

3. Conjugacy of normal subgroups in PSL(2, R):

Conjugating element always can be found in a maximal

triangle group.
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